Fractional Integration of Product of Generalized Galue Type Struve Function and $\overline{\text { н }}$ Function

Kulwant Kaur Ahluwalia
Department of Mathematics Mata Gujri Mahila Mahavidyalaya (Autonomous), Jabalpur M.P.(India)

kulwant.ahluwalia34@gmail.com

ABSTRACT

The aim of this research paper is to study the generalized Marichev- Saigo- Maeda fractional integral operators. We will establish two theorems which give the images of the product of generalized Galue type Struve function and \bar{H} function under integral operators in terms of \bar{H} function. Some useful special cases are also obtained from our main theorems.

KeyWords: Marichev-Saigo-Maeda fractional integral operators, Galue type Struve function, $\overline{\mathrm{H}}$ function.

Introduction

Generalized Fractional Integral Operators

Let $\alpha, \beta, \eta \in \square, x>0$ and $\operatorname{Re}(\alpha)>0$; then the generalized fractional integration operators associated with Gauss Hypergeometric function, Saigo [3] are defined by the following equations;

$$
\begin{align*}
& \left(\mathrm{I}_{0,+}^{\alpha, \beta, \eta} \mathrm{f}\right)(\mathrm{x})=\frac{\mathrm{x}^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{\mathrm{x}}(\mathrm{x}-\mathrm{t})^{\alpha-1} \times{ }_{2} \mathrm{~F}_{1}\left(\alpha+\beta,-\eta ; \alpha ; 1-\frac{\mathrm{t}}{\mathrm{x}}\right) \mathrm{f}(\mathrm{t}) \mathrm{dt}, \tag{1}\\
= & \frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{dx}^{\mathrm{n}}}\left(\mathrm{I}_{0+}^{\alpha+n, \beta-\mathrm{n}, \eta-\mathrm{n}} \mathrm{f}\right)(\mathrm{x}) ; \quad(\operatorname{Re}(\alpha) \leq 0 ; \mathrm{n}=[\operatorname{Re}(-\alpha]+1) \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\mathrm{I}_{-}^{\alpha, \beta, \eta} \mathrm{f}\right)(\mathrm{x})=\frac{1}{\Gamma(\alpha)} \int_{\mathrm{x}}^{\infty}(\mathrm{t}-\mathrm{x})^{\alpha-1} \mathrm{t}^{-\alpha-\beta} \times{ }_{2} \mathrm{~F}_{1}\left(\alpha+\beta,-\eta ; \alpha ; 1-\frac{\mathrm{x}}{\mathrm{t}}\right) \mathrm{f}(\mathrm{t}) \mathrm{dt} \tag{3}\\
& =(-1)^{\mathrm{n}} \frac{\mathrm{~d}^{\mathrm{n}}}{\mathrm{dx}^{\mathrm{n}}}\left(\mathrm{I}_{-}^{\alpha+\mathrm{n}, \beta-\mathrm{n}, \mathrm{n}} \mathrm{f}\right)(\mathrm{x}) ; \quad(\operatorname{Re}(\alpha) \leq 0 ; \mathrm{n}=[\operatorname{Re}(-\alpha]+1) \tag{4}
\end{align*}
$$

The generalized fractional integration operators of arbitrary order involving Appell function $F_{3}($.$) also known$ as Horn function [20] in the kernel have been introduced by Marichev [4] and later extended and studied by Saigo and Maeda [5], in the following forms;

Let $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma \in \square, x>0$ and $\operatorname{Re}(\gamma)>0$, then;
$\left(\mathrm{I}_{0,+}^{\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma} \mathrm{f}\right)(\mathrm{x})=\frac{\mathrm{x}^{-\alpha}}{\Gamma(\gamma)} \int_{0}^{\mathrm{x}}(\mathrm{x}-\mathrm{t})^{\gamma-1} \mathrm{t}^{-\alpha^{\prime}} \times \mathrm{F}_{3}\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma ; 1-\frac{\mathrm{t}}{\mathrm{x}}, 1-\frac{\mathrm{x}}{\mathrm{t}}\right) \mathrm{f}(\mathrm{t}) \mathrm{dt}$
and
$\left(\mathrm{I}_{0,-}^{\alpha, \alpha^{\prime} \beta, \beta^{\prime}, \gamma} \mathrm{f}\right)(\mathrm{x})=\frac{\mathrm{x}^{-\alpha^{\prime}}}{\Gamma(\gamma)} \int_{\mathrm{x}}^{\infty}(\mathrm{t}-\mathrm{x})^{\gamma-1} \mathrm{t}^{-\alpha} \times \mathrm{F}_{3}\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime} ; \gamma ; 1-\frac{\mathrm{x}}{\mathrm{t}}, 1-\frac{\mathrm{t}}{\mathrm{x}}\right) \mathrm{f}(\mathrm{t}) \mathrm{dt}$
Further from Saigo and Maeda [5] we also have the following two results;
(i) Let $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \rho \in \square$ be such that, $\operatorname{Re}(\gamma)>0$ and $\operatorname{Re}(\rho)>\max \left[0, \operatorname{Re}\left(\alpha+\alpha^{\prime}+\beta-\gamma\right), \operatorname{Re}\left(\alpha^{\prime}-\beta^{\prime}\right)\right]$, then;
$\left(\mathrm{I}_{0,+}^{\alpha, \alpha ; \beta, \beta^{\prime}, \gamma} \mathrm{t}^{\rho-1}\right)(\mathrm{x})=\Gamma\left[\begin{array}{c}\rho, \rho+\gamma-\alpha-\alpha^{\prime}-\beta, \rho+\beta^{\prime}-\alpha^{\prime} \\ \rho+\beta^{\prime}, \rho+\gamma-\alpha-\alpha^{\prime}, \rho+\gamma-\alpha^{\prime}-\beta\end{array}\right] \mathbf{X}^{\rho-\alpha-\alpha^{\prime}+\gamma-1}$
where,
$\Gamma\left[\begin{array}{c}\mathrm{a}, \mathrm{b}, \mathrm{c} \\ \mathrm{x}, \mathrm{y}, \mathrm{z}\end{array}\right]=\frac{\Gamma(\mathrm{a}) \Gamma(\mathrm{b}) \Gamma(\mathrm{c})}{\Gamma(\mathrm{x}) \Gamma(\mathrm{y}) \Gamma(\mathrm{z})}$
(ii) Let $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \rho \in \square$ be such that, $\operatorname{Re}(\gamma)>0$ and
$\operatorname{Re}(\rho)<1+\min \left[\operatorname{Re}(-\beta), \operatorname{Re}\left(\alpha+\alpha^{\prime}-\gamma\right), \operatorname{Re}\left(\alpha+\beta^{\prime}-\gamma\right)\right]$, then;
$\left(\mathrm{I}_{0,-}^{\alpha, \alpha^{\prime} ; \beta, \beta^{\prime} \gamma \gamma^{\prime}}{ }^{\rho-1}\right)(\mathrm{x})=\Gamma\left[\begin{array}{c}1-\rho-\gamma+\alpha+\alpha^{\prime}, 1-\rho+\alpha+\beta^{\prime}-\gamma, 1-\rho-\beta \\ 1-\rho, 1-\rho+\alpha+\alpha^{\prime}+\beta^{\prime}-\gamma, 1-\rho+\alpha-\beta\end{array}\right] \mathrm{x}^{\rho-\alpha-\alpha^{\prime}+\gamma-1}$

Generalized Hypergeometric function:

The series definition of hypergeometric function ${ }_{2} \mathrm{~F}_{1}($.$) is given by;$
${ }_{2} F_{1}(a, b ; c ; x)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} x^{n}$,
where c is neither zero nor a negative integer. The series (9) is absolutely convergent within the circle of convergence $|\mathrm{x}|<1$, on the circle of convergence the series is absolutely convergent if, $\operatorname{Re}(\mathrm{c}-\mathrm{a}-\mathrm{b})>0$.

Also, if $\operatorname{Re}(c-a-b)>0, \operatorname{Re}(c)>\operatorname{Re}(b)>0$, then;

$$
{ }_{2} \mathrm{~F}_{1}(\mathrm{a}, \mathrm{~b} ; \mathrm{c} ; 1)=\frac{\Gamma(\mathrm{c}) \Gamma(\mathrm{c}-\mathrm{a}-\mathrm{b})}{\Gamma(\mathrm{c}-\mathrm{a}) \Gamma(\mathrm{c}-\mathrm{b})},
$$

The generalized hypergeometric function ${ }_{\mathrm{p}} \mathrm{F}_{\mathrm{q}}$ defined by Rainville [7], is given by;

$$
{ }_{\mathrm{p}} \mathrm{~F}_{\mathrm{q}}\left[\begin{array}{l}
\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots ., \mathrm{a}_{\mathrm{p}} ; \tag{10}\\
\left.\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots \ldots \ldots, \mathrm{~b}_{\mathrm{q}} ;{ }^{2}\right]=\sum_{\mathrm{m}=0}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{m}}, \ldots \ldots .,\left(\mathrm{a}_{\mathrm{p}}\right)_{\mathrm{m}}}{\left(\mathrm{~b}_{1}\right)_{\mathrm{m}}, \ldots \ldots \ldots .,\left(\mathrm{b}_{\mathrm{q}}\right)_{\mathrm{m}}} \cdot \frac{\mathrm{z}^{\mathrm{m}}}{\mathrm{~m}!}
\end{array}\right.
$$

where p and q are positive integers or zero, $\alpha_{1}, \ldots \ldots . . ., \alpha_{\mathrm{p}}$, and $\beta_{1}, \ldots \ldots . . ., \beta_{\mathrm{q}}$ take complex
values, provided that no zeros appear in the denominator, i.e., $\left(\beta_{\mathrm{j}} \in \square / \mathrm{Z}_{0}^{-} ; \mathrm{j}=1\right.$, \qquad , q) .

H -function:

The H-function introduced by C. Fox [6], in terms of Mellin-Barnes type of contour integral is defined as follows;

$$
\begin{align*}
\mathrm{H}_{\mathrm{p}, \mathrm{q}}^{\mathrm{m}, \mathrm{n}}[\mathrm{z}]= & \mathrm{H}_{\mathrm{p}, \mathrm{q}}^{\mathrm{m}, \mathrm{n}}
\end{align*}\left[\mathrm{z}\left[\begin{array}{l}
\left(\mathrm{a}_{1}, \alpha_{1}\right), \ldots \ldots . .,\left(\mathrm{a}_{\mathrm{p}}, \alpha_{\mathrm{p}}\right) \\
\left(\mathrm{b}_{1}, \beta_{1}\right), \ldots \ldots . .,\left(\mathrm{b}_{\mathrm{q}}, \beta_{\mathrm{q}}\right) \tag{11}
\end{array}\right]\right) \quad(\mathrm{z} \neq 0)
$$

where,
$\phi(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\alpha_{j} s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+\beta_{j} s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-\alpha_{j} s\right)}$
Here m, n, p, q are integers satisfying $0 \leq m \leq q, 0 \leq n \leq p ; a_{j}(j=1, \ldots \ldots, p)$ and $\left.b_{j}(j=1, \ldots \ldots . .)^{\prime}\right)$ are complex parameters, $\alpha_{\mathrm{j}} \geq 0(\mathrm{j}=1, \ldots \ldots . ., \mathrm{p}), \beta_{\mathrm{i}} \geq 0(\mathrm{j}=1, \ldots \ldots ., \mathrm{q})$ are positive numbers. The contour integral (9) converges absolutely if,

$$
\mathrm{T}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{\mathrm{j}}-\sum_{\mathrm{j}=\mathrm{n}+1}^{\mathrm{p}} \alpha_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{m}} \beta_{\mathrm{j}}-\sum_{\mathrm{j}=\mathrm{m}+1}^{\mathrm{q}} \beta_{\mathrm{j}}>0
$$

and $|\arg \mathrm{z}|<\frac{1}{2} \pi \mathrm{~T}$

$\overline{\mathrm{H}}$-function:

The $\overline{\mathrm{H}}$-function was introduced by Inayat Hussain [1] and studied by Bushman and Shrivastava [2] is defined and represented in the following manner,

$$
\begin{align*}
& \bar{H}_{\mathrm{p}, \mathrm{q}}^{\mathrm{m}, \mathrm{n}}[\mathrm{z}]=\overline{\mathrm{H}}_{\mathrm{p}, \mathrm{q}}^{\mathrm{m}, \mathrm{q}}\left[\mathrm{z} \left\lvert\, \begin{array}{c}
\left.\left(\mathrm{a}_{\mathrm{j}}, \alpha_{\mathrm{j}} ; \mathrm{A}_{\mathrm{j}}\right)_{1, \mathrm{n}},\left(\mathrm{a}_{\mathrm{j},} \alpha_{\mathrm{j}}\right)_{\mathrm{n}+1, \mathrm{p}} \mathrm{p}_{1, \mathrm{~m}},\left(\mathrm{~b}_{\mathrm{j}}, \beta_{\mathrm{j}} ; \mathrm{B}_{\mathrm{j}}\right)_{\mathrm{m}+\mathrm{l}, \mathrm{q}}\right]
\end{array}\right.\right] \\
& =\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{L}} \mathrm{z}^{\mathrm{s}} \bar{\phi}(\mathrm{~s}) \mathrm{ds}, \quad(\mathrm{z} \neq 0) \tag{13}
\end{align*}
$$

where,

$$
\begin{equation*}
\bar{\phi}(\mathrm{s})=\frac{\prod_{\mathrm{j}=1}^{\mathrm{q}} \Gamma\left(\mathrm{~b}_{\mathrm{j}}-\beta_{\mathrm{j}} \mathrm{~s}\right) \prod_{\mathrm{j}=1}^{\mathrm{q}}\left\{\Gamma\left(1-\mathrm{a}_{\mathrm{j}}+\alpha_{\mathrm{j}} \mathrm{~s}\right)\right\}^{A_{j}}}{\prod_{\mathrm{j}=\mathrm{m}+1}\left\{\Gamma\left(1-\mathrm{b}_{\mathrm{j}}+\beta_{\mathrm{j}} \mathrm{~s}\right)\right\}^{\mathrm{B}_{\mathrm{j}}} \prod_{\mathrm{j}=\mathrm{n}+1}^{\mathrm{p}} \Gamma\left(\mathrm{a}_{\mathrm{j}}-\alpha_{\mathrm{j}} \mathrm{~s}\right)}, \tag{14}
\end{equation*}
$$

Here L is a contour starting at the point $\mathrm{c}-\mathrm{i} \infty$ and terminating at the point $\mathrm{c}+\mathrm{i} \infty, \mathrm{a}_{\mathrm{j}}(\mathrm{j}=1, \ldots \ldots, \mathrm{p})$ and $\mathrm{b}_{\mathrm{j}}(\mathrm{j}=1, \ldots \ldots . . \mathrm{q})$ are complex parameters, $\alpha_{\mathrm{j}} \geq 0(\mathrm{j}=1$, \qquad , p), $\beta_{\mathrm{j}} \geq 0(\mathrm{j}=1$ \qquad ,q), (not all zero simultaneously) and the exponents $\mathrm{A}_{\mathrm{j}}(\mathrm{j}=1$, \qquad n) , $B_{j}(j=m+1$ q) can take integer values.

Sufficient condition for absolute convergence of the contour integral in (11) established by Buschman and Shrivastava [2] is as follows;
$\mathrm{T}=\sum_{\mathrm{j}=1}^{\mathrm{m}} \beta_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{n}}\left|\mathrm{A}_{\mathrm{j}} \alpha_{\mathrm{j}}\right|-\sum_{\mathrm{j}=\mathrm{m}+1}^{\mathrm{q}}\left|\mathrm{B}_{\mathrm{j}} \beta_{\mathrm{j}}\right|-\sum_{\mathrm{j}=\mathrm{n}+1}^{\mathrm{p}} \alpha_{\mathrm{j}}>0$,
and $\quad|\arg \mathrm{z}|<\frac{1}{2} \pi \mathrm{~T}$,

Generalized Galue Type Struve Function:

Galue [17] introduced a generalization of the Bessel function of order h given by;

$$
\begin{equation*}
{ }_{\mu} J_{\mathrm{h}}(\mathrm{z})=\sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{\Gamma(\mu \mathrm{k}+\mathrm{h}+1) \mathrm{k}!}\left(\frac{\mathrm{z}}{2}\right)^{2 \mathrm{k}+\mathrm{h}}, \quad \mathrm{z} \in \mathrm{R}, \mu \in \mathrm{~N} \tag{15}
\end{equation*}
$$

Struve investigated the Struve function of order p , which is given by;

$$
\begin{equation*}
\mathrm{H}_{\mathrm{p}}(\mathrm{z})=\sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{\Gamma\left(\mathrm{k}+\frac{3}{2}\right) \Gamma\left(\mathrm{k}+\mathrm{p}+\frac{3}{2}\right)}\left(\frac{\mathrm{z}}{2}\right)^{2 \mathrm{k}+\mathrm{p}+1}, \quad \text { for all } \mathrm{z} \in \square \tag{16}
\end{equation*}
$$

which is a particular solution of non-homogeneous differential equation,
$z^{2} y^{\prime \prime}(z)+z y^{\prime}(z)+\left(z^{2}-p^{2}\right) y(z)=\frac{4\left(\frac{z}{2}\right)^{p+1}}{\sqrt{\pi} \Gamma\left(p+\frac{1}{2}\right)}$
and its homogeneous part is Bessel's equation. For several generalization of the Struve function, see [8,9,10,11]

Nisar [12] defined the generalized Galue type Struve function which is the generalized form of Struve function, as:

$$
\begin{equation*}
{ }_{\mathrm{a}} W_{\mathrm{p}, \mathrm{~b}, \mathrm{c}, \delta}^{\mu, v}(\mathrm{t})=\sum_{\mathrm{k}=0}^{\infty} \frac{(-\mathrm{c})^{\mathrm{k}}}{\Gamma(\mu \mathrm{k}+\mathrm{v}) \Gamma\left(\mathrm{ak}+\frac{\mathrm{p}}{\delta}+\frac{\mathrm{b}+2}{2}\right)}\left(\frac{\mathrm{t}}{2}\right)^{2 \mathrm{k}+\mathrm{p}+1} \tag{17}
\end{equation*}
$$

Where $\mathrm{a} \in \mathrm{N} ; \mathrm{p}, \mathrm{b}, \mathrm{c} \in \mathrm{C}$ and $\mu>0, \delta>0, v$ is an arbitrary parameter.

Main Results

Theorem 1: If $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \rho \in \square, \mathrm{x}>0, \mathrm{~T}>0,|\arg \mathrm{z}|<\frac{1}{2} \pi \mathrm{~T}$,such that $\operatorname{Re}(\gamma)>0$ and $\operatorname{Re}[\rho+2 \mathrm{k} \sigma+\mathrm{p} \sigma+\sigma+\lambda \xi]>\max \left[0, \operatorname{Re}\left(\alpha+\alpha^{\prime}+\beta-\gamma\right), \operatorname{Re}\left(\alpha^{\prime}-\beta^{\prime}\right)\right]$, then;

$$
\begin{align*}
& =\mathrm{x}^{\Delta-\alpha-\alpha^{\prime}+\gamma-1} \times \sum_{\mathrm{k}=0}^{\infty} \frac{(-\mathrm{c})^{\mathrm{k}}}{\Gamma(\mu \mathrm{k}+v) \Gamma\left(\mathrm{ak}+\frac{\mathrm{p}}{\delta}+\frac{\mathrm{b}+2}{2}\right)}\left(\frac{\eta}{2}\right)^{2 \mathrm{k}+\mathrm{p}+1} \\
& \times \overline{\mathrm{H}}_{\mathrm{P}+3, \mathrm{Q}+3}^{\mathrm{M}, \mathrm{~N}+3}\left[\omega \mathrm{x}^{\lambda} \left\lvert\, \begin{array}{c}
(1-\Delta, \lambda ; 1),\left(1-\Delta-\gamma+\alpha+\alpha^{\prime}+\beta, \lambda ; 1\right), \\
\left(\mathrm{f}_{\mathrm{j}}, \mathrm{~F}_{\mathrm{j}}\right)_{1, \mathrm{M}},\left(\mathrm{f}_{\mathrm{j}}, \mathrm{~F}_{\mathrm{j}} ; \mathrm{B}_{\mathrm{j}}\right)_{\mathrm{M}+1, \mathrm{Q}},
\end{array}\right.\right. \\
& \left.\begin{array}{c}
\left(1-\Delta-\beta^{\prime}+\alpha^{\prime}, \lambda ; 1\right),\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}} ; \mathrm{A}_{\mathrm{j}}\right)_{1, \mathrm{~N}},\left(\mathrm{e}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)_{\mathrm{N}+1, \mathrm{P}} \\
\left(1-\Delta-\beta^{\prime}, \lambda ; 1\right),\left(1-\Delta-\gamma+\alpha+\alpha^{\prime}, \lambda ; 1\right),\left(1-\Delta-\gamma+\alpha^{\prime}+\beta, \lambda ; 1\right)
\end{array}\right] \tag{18}
\end{align*}
$$

$$
\text { where } \Delta=\rho+2 \mathrm{k} \sigma+\mathrm{p} \sigma+\sigma
$$

Proof: Applying equation (5), (13) and (17) to the left-hand side of (18) and then interchanging the order of summation and integration we have,

$$
\left.\begin{array}{l}
\mathbf{I}_{O,+}^{\alpha, \alpha^{\prime}, \beta, \beta, \beta^{\prime}, \gamma}\left(\mathrm{t}^{\rho-1}{ }_{\mathrm{a}} W_{\mathrm{p}, \mathrm{~b}, \mathrm{c}, \mathrm{\delta}}^{\mu, v}\left(\eta \mathrm{t}^{\sigma}\right) \overline{\mathrm{H}}_{\mathrm{P}, \mathrm{Q}}^{\mathrm{M}, \mathrm{~N}}\right.
\end{array}\left[\begin{array}{l}
\left.\left.\omega \mathrm{t}^{\lambda}\right|_{\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}}, \mathrm{~A}_{\mathrm{j}}\right)_{1, \mathrm{~N}},\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}}\right)_{\mathrm{N}+1, \mathrm{P}}} ^{\left(\mathrm{f}_{\mathrm{j}}, \mathrm{~F}_{\mathrm{j}}\right)_{1, \mathrm{M}},\left(\mathrm{f}_{\mathrm{j}}, \mathrm{~F}_{\mathrm{j}}, \mathrm{~B}_{\mathrm{j}}\right)_{\mathrm{M}+1, \mathrm{Q}}}\right]
\end{array}\right)\right](\mathrm{x}) .
$$

Now applying the Saigo Maeda operator (7) we obtain the right hand side of (18).
Corollary1: If $\alpha, \beta, \gamma, \in \square, \mathrm{x}>0, \mathrm{~T}>0,|\arg \mathrm{z}|<\frac{1}{2} \pi \mathrm{~T}$, such that $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}[\rho+2 \mathrm{k} \sigma+\mathrm{p} \sigma+\sigma+\lambda \xi]>\max [0, \operatorname{Re}(\beta-\gamma)]$, then;

$=\mathrm{x}^{\Delta-\beta-1} \times \sum_{\mathrm{k}=0}^{\infty} \frac{(-\mathrm{c})^{\mathrm{k}}}{\Gamma(\mu \mathrm{k}+v) \Gamma\left(\mathrm{ak}+\frac{\mathrm{p}}{\delta}+\frac{\mathrm{b}+2}{2}\right)}\left(\frac{\eta}{2}\right)^{2 \mathrm{k}+\mathrm{p}+1}$
$\times \overline{\mathrm{H}}_{\mathrm{P}+2, \mathrm{Q}+2}^{\mathrm{M}, \mathrm{N}+2}\left[\omega \mathrm{x}^{\lambda} \left\lvert\, \begin{array}{l}(1-\Delta, \lambda ; 1),(1-\Delta-\gamma+\beta, \lambda ; 1),\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}} ; \mathrm{A}_{\mathrm{j}}\right)_{1, \mathrm{~N}},\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}}\right)_{\mathrm{N}+1, \mathrm{P}} \\ \left(\mathrm{f}_{\mathrm{j}}, \mathrm{F}_{\mathrm{j}}\right)_{1, \mathrm{M}},\left(\mathrm{f}_{\mathrm{j}}, \mathrm{F}_{\mathrm{j}} ; \mathrm{B}_{\mathrm{j}}\right)_{\mathrm{M}+1, \mathrm{Q}},(1-\Delta+\beta, \lambda ; 1),(1-\Delta-\alpha-\gamma, \lambda ; 1)\end{array}\right.\right]$
$\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \rho \in \square, \quad \mathrm{x}>0, \mathrm{~T}>0,|\arg \mathrm{z}|<\frac{1}{2} \pi \mathrm{~T}$, such that $\operatorname{Re}(\gamma)>0$ and
$\operatorname{Re}[\rho+2 \mathrm{k} \sigma+\mathrm{p} \sigma+\sigma-\lambda \xi]<1+\min \left[\operatorname{Re}(-\beta), \operatorname{Re}\left(\alpha+\alpha^{\prime}-\gamma\right),\left(\alpha+\beta^{\prime}-\gamma\right)\right]$, then;

$$
\times \overline{\mathrm{H}}_{\mathrm{P}+3, \mathrm{Q}+3}^{\mathrm{M}, \mathrm{~N}+3}\left[\mathrm{x}^{-\lambda} \left\lvert\, \begin{array}{cc}
\left(\Delta+\gamma-\alpha-\alpha^{\prime}, \lambda ; 1\right),\left(\Delta-\alpha-\beta^{\prime}+\gamma, \lambda ; 1\right), & (\Delta+\beta, \lambda ; 1),\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}} ; \mathrm{A}_{\mathrm{j}}\right)_{1, \mathrm{~N}},\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}}\right)_{\mathrm{N}+\mathrm{l}, \mathrm{P}} \tag{20}\\
\left(\mathrm{f}_{\mathrm{j}}, \mathrm{~F}_{\mathrm{j}}\right)_{1, \mathrm{M}},\left(\mathrm{f}_{\mathrm{j}}, \mathrm{~F}_{\mathrm{j}} ; \mathrm{B}_{\mathrm{j}}\right)_{\mathrm{M}+1, \mathrm{Q}}, & (\Delta, \lambda ; 1),\left(\Delta-\alpha-\alpha^{\prime}-\beta+\gamma^{\prime}, \lambda ; 1\right),(\Delta-\alpha+\beta, \lambda ; 1)
\end{array}\right.\right]
$$

where $\quad \Delta=\rho+2 \mathrm{k} \sigma+\mathrm{p} \sigma+\sigma$
Proof: Applying equation (6), (13) and (17) to the left-hand side of (20) and then interchanging the order of summation and integration we have,

Now applying the Saigo Maeda operator (8) we obtain the right-hand side of (20).
Corollary 2: If $\alpha, \beta, \gamma, \in \square, \mathrm{x}>0, \mathrm{~T}>0,|\arg \mathrm{z}|<\frac{1}{2} \pi \mathrm{~T}$,such that $\operatorname{Re}(\alpha)>0$ and
$\operatorname{Re}[\rho+2 \mathrm{k} \sigma+\mathrm{p} \sigma+\sigma-\lambda \xi]<1+\min [\operatorname{Re}(\beta), \operatorname{Re}(\gamma)]$, then;

$x^{\Delta-\beta-1} \times \sum_{\mathrm{k}=0}^{\infty} \frac{(-\mathrm{c})^{\mathrm{k}}}{\Gamma(\mu \mathrm{k}+v) \Gamma\left(\mathrm{ak}+\frac{\mathrm{p}}{\delta}+\frac{\mathrm{b}+2}{2}\right)}\left(\frac{\eta}{2}\right)^{2 \mathrm{k}+\mathrm{p}+1}$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} \frac{(-\mathrm{c})^{\mathrm{k}}}{\Gamma(\mu \mathrm{k}+v) \Gamma\left(\mathrm{ak}+\frac{\mathrm{p}}{\delta}+\frac{\mathrm{b}+2}{2}\right)}\left(\frac{\eta}{2}\right)^{2 \mathrm{k}+\mathrm{p}+1} \\
& \times \frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{L}} \omega^{\xi} \theta(\xi)\left\{\mathrm{I}_{0,-}^{\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma} \mathrm{t}^{\rho+2 \mathrm{k} \sigma+\mathrm{p} \sigma+\sigma-\lambda \xi-1}\right\}(\mathrm{x}) \mathrm{d} \xi
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{x}^{\Delta-\alpha-\alpha^{\prime}+\gamma-1} \times \sum_{\mathrm{k}=0}^{\infty} \frac{(-\mathrm{c})^{\mathrm{k}}}{\Gamma(\mu \mathrm{k}+v) \Gamma\left(\mathrm{ak}+\frac{\mathrm{p}}{\delta}+\frac{\mathrm{b}+2}{2}\right)}\left(\frac{\eta}{2}\right)^{2 \mathrm{k}+\mathrm{p}+1}
\end{aligned}
$$

$\times \overline{\mathrm{H}}_{\mathrm{P}+2, \mathrm{Q}+2}^{\mathrm{M}, \mathrm{N}+2}\left[\omega \mathrm{x}^{-\lambda} \left\lvert\, \begin{array}{c}(\Delta-\beta, \lambda ; 1),(\Delta-\gamma, \lambda ; 1),\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}} ; \mathrm{A}_{\mathrm{j}}\right)_{1, \mathrm{~N}},\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}}\right)_{\mathrm{N}+1, \mathrm{P}} \\ \left(\mathrm{f}_{\mathrm{j}}, \mathrm{F}_{\mathrm{j}}\right)_{1, \mathrm{M}},\left(\mathrm{f}_{\mathrm{j}}, \mathrm{F}_{\mathrm{j}} ; \mathrm{B}_{\mathrm{j}}\right)_{\mathrm{M}+1, \mathrm{Q}},(\Delta, \lambda ; 1),(\Delta-\alpha-\beta-\gamma, \lambda ; 1)\end{array}\right.\right]$
where $\quad \Delta=\rho+2 \mathrm{k} \sigma+\mathrm{p} \sigma+\sigma$

References:

[1] A.A. Inayat Hussain, "New properties of Hypergeometric series derivable from Feynmam integrals II, A generalization of the H-function", J. Phys. A. Math. Gen 20 (1987), 4119-4128.
${ }_{[2]}$ R.G. Buschman and H.M. Shrivastava "The $\overline{\mathrm{H}}$-function Associated with a certain class of Feynman integral", J. Phys. A. Math. Gen. 23, (1990), 4707-4710.
[3] M. Saigo "A remark on integral operators involving the Gauss hypergeometric functions". Math. Rep. College General Ed.Kyushu Univ. 11(1978), 135-143.
[4] O. I. Marichev, "Volterra equation of Mellin convolution type with a Horn function in the kernel," Izvestiya Akademii Nauk BSSR. Seriya Fiziko-Matematicheskikh Nauk, vol. 1, (1974), 128-129.
[5] M. Saigo and N. Maeda, "More generalization of fractional calculus, In: Transform Methods and Special Functions", Verna, (1996), Proc. $2^{\text {nd }}$ Intern. Workshop, P. Rusev, I. Dimovski and V. Kiryakova (Eds.), IMI-BAS, Sofia, (1998), 386-400
[6] C. Fox, "The G and H functions as symmetrical Fourier Kernels", Trans. Amer. Math. Soc. 98 (1961), 395-429.
${ }^{[7]}$ E.D. Rainville, Special Functions, Macmillan Company, New York, (1960); Reprinted by Chelsea Publishing Company, New York, (1971).
${ }_{[8]}$ K.N. Bhowmick, Some relations between a generalized Struve's function and hypergeometric functions, Vijnana Parishad Anusandhan Patrika, vol. 5(1962), 93-99.
${ }^{[9]}$ B.N. Kant, Integrals involving generalized Struve's function, Nepali Math. Sci. Rep., vol. 6 (1981), 6164.
[10] H. Orahan and N. Yagmur, Star likeness and convexity of generalized Struve's function, Abstr. Appl. Anal., Art. ID-954513 Vol. 6 (2013).
[11] R.P. Singh, Generalized Struve's function and its recurrence relations, Ranchi Univ. Math J. vol. 5 (1974), 67-75.
[12] Nisar, K.S., Baleanu, D. and Qurashi, M.M.A. (2016). Fractional calculus and application of generalized Struve function, DOI 10.1186/s40064-016-2560-3.
[13] L.S. Singh and D.K. Singh, Fractional calculus of the H - function, Tamkang Journal of Mathematics, vol. 41 (2010), no-2, 181-194.2
[14] K.S. Miller and B. Ross, "An Introduction to the Fractional Calculus and Differential Equations", A Wiley Intersciences Publilcation, John Wiley and Sons Inc., New York, (1993).
[15] D. Baleanu, D. Kumar, \& S.D. Purohit "Generalized fractional integrals of product of two H-functions and a general class of polynomials", International Journal of Computer Mathematics, (2016), 1320-1329.
[16] A.A. Kilbas, N. Sebastain, "Generalized Fractional Integration of Bessel Function of First Kind", Integral transform and Spec. Funct., Vol. 19 (2008) No. 12, 869-883.
[17] Galue, A generalized Bessel function Int. Transform Spec. Funct., vol. 14 (2003).
${ }_{[18]}$ V.B.L. Chourasiya and Yudhveer Singh, Marichev-Saigo-Maeda Fractional Integral Operators of Certain Special Functions, Gen. Math. Notes, vol. 26, no 1, (2015), 134-144.
[19] P. Agrawal, Generalized Fractional Integration of The $\overline{\mathrm{H}}$-Function, Le Mathematiche, vol. LXII (2012)Fasc. II, 107-118.
[20] M. Srivastava, P.W. Karlson, Multiple gaussion hypergeometric series, Ellis Horwood Limited, New York.

